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1 Logic and Decision-Making

What is the link between logic and decision-making?

None: Logic is about consequence / consistency, DM about pragmatics

Ø theoretical versus pragmatic rationality in traditional epistemology

Weak: A justificatory link between the two—e.g., a pragmatic justification of logic

Ø e.g., Dutch book considerations in Bayesian epistemology

Strong: Can’t do one without the other, & how one is done depends on the other.

� DM requires logic and logic is determined by the DM context.
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2 The Role of Probabilistic Logic

� Typically, one has, at any one time, probabilities of some propositions but not others.

� Decision theory requires probabilities of relevant propositions.

– E.g., A utility matrix for judging chemotherapy:

Judgement
C ¬C

Case R 5 -10
¬R -4 1

É One needs a way of determining appropriate probabilities for relevant propositions from
given probabilities.

É One needs probabilistic logic, which can answer questions of the form:

φX11 , . . . , φXn
n
|≈ ψ?
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3 Probabilistic Logics

Expressions of the form φX11 , . . . , φXn
n
|≈ ψY admit a variety of semantics:

Standard Probabilistic Semantics: Y = {P(ψ) : P satisfies premisses}

Probabilistic Argumentation: Y = probability of worlds where entailment holds

Evidential Probability: Y = risk level associated with statistical inferences

Bayesian Statistics: Y = probabilities yielded by Bayes’ theorem

Bayesian Epistemology: Y = appropriate degree of belief in ψ

Probabilistic networks can provide a calculus for probabilistic logic—they can often be used
to provide answers to the fundamental question φX11 , φX22 , . . . , φXn

n
|≈ ψ?

Network Construction: Build a net to represent those P that satisfy the premisses

Inference: Calculate Y from the net

See:

� Rolf Haenni’s progic2007 talk,

� Haenni, R., Romeijn, J.-W., Wheeler, G., and Williamson, J. (2010). Probabilistic logic and
probabilistic networks. Synthese Library. Springer
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4 Bayesian Epistemology

φX11 , . . . , φXn
n
|≈ ψY

Y = appropriate degree of belief in ψ, given that X1, . . . , Xn are appropriate for φ1, . . . , φn.

� I.e., P(ψ) ∈ Y where P(φ1) ∈ X1, . . . , P(φn) ∈ Xn and P is a rational belief function.

4.1 Norms for Bayesian Epistemology

Probability: To avoid sure synchronic loss, P should be a probability function.

É We have a genuine probabilistic logic.

Calibration: To avoid sure expected or long-run loss, P should be calibrated with physical
probability P∗, where known.

� Semantics: φX11 , . . . , φXn
n
|≈ ψY iff P(ψ) ∈ Y where P∗(φ1) ∈ X1, . . . , P∗(φn) ∈ Xn

Equivocation: To minimise worst-case expected loss, P should otherwise be closest to the
equivocator P=, where distance function d depends on the loss function.

É P is the robust Bayes choice

� if loss is logarithmic then d is KL-divergence and we get maxent.
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Agent’s language ℒ = {A1, . . . , An}, evidence ℰ, atomic states Ω = {±A1 ∧ · · ·∧ ±An}

Probability

P1: P(ω)≥0 for each ω ∈ Ω,

P2: P(τ) = 1 for some tautology τ ∈ Sℒ, and

P3: P(θ) =
∑

ω|=θ P(ω) for each θ ∈ Sℒ.

Calibration

C: Pℰ ∈ E = 〈P∗〉 ∩S

Equivocation

E: Pℰ ∈ ↓E = {P ∈ E : d(P, P=) is minimised}

where P=(ω) = 1/2n for each ω ∈ Ω.

� But what is the distance function d?

(Williamson, J. (2010). In defence of objective Bayesianism. Oxford University Press, Oxford.)
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4.2 Distance between probability functions

� A: space of actions.

� L(ω,): loss on doing  ∈ A when ω ∈ Ω is the case.

Here A = P and the loss function L(ω,Q) is called a scoring rule.

� L(P, )
df
= EPL(Ω, ) =

∑

ω∈Ω P(ω)L(ω,) is the expected loss for P.

� H(P)
df
= inf∈A L(P, ) is the Bayes loss or generalised entropy of P.

Assume that the scoring rule L is proper: for all P, Q = P minimises L(P,Q). (Q is a Bayes act.)

É Then H(P) = L(P, P) for P ∈ E.

� d(P,Q)
df
= L(P,Q)−H(P) is the divergence of P from Q.

Assume that the scoring rule L is equivocator-neutral: L(P, P=) = k, a constant, for all P.

� e.g., brier score, logarithmic loss, zero-one loss.

É under natural conditions, rg infQ∈P spP∈E L(P,Q) = rg infP∈E d(P, P=)

É the functions minimising maximum expected loss are those in E closest to the equiv-
ocator.

Grünwald, P. and Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy,
and robust Bayesian decision theory. Annals of Statistics, 32(4):1367–1433.
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5 Logarithmic loss

� Log loss: L(ω,Q) = − logQ(ω)

É KL-divergence: d(P,Q) =
∑

ω P(ω) log
P(ω)
Q(ω)

É Maxent: P ∈ E minimises d(P, P=) iff P ∈ E maximises −
∑

ω P(ω) logP(ω)

É φX11 , . . . , φXn
n
|≈ ψY iff maxent P satisfying LHS satisfies RHS.

? Is log loss appropriate as a default loss function?
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5.1 Information theory

Ø log as measure of information or code length.

× only relevant in particular cases.

* E.g., loss = cost of communicating messages (Topsøe, 1979). Irrelevant here.

× N.b., Good (1952, §8) prefers a different logarithmic loss function.

Ø KL-divergence as a measure of distance

Ø Hobson (1971): if d(P,Q) is interpreted as the information in P that is not in Q.

Ø Information geometry: divergence minimisation as projection.

× fits most naturally with exponential distributions.
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5.2 Kelly Gambling

Betting set-up:

� a return of o pounds for each pound bet on ω if ω turns out true.

� agent bets Q(ω)W on each ω where W is her total wealth.

– e.g., horse-racing works like this.

� bets are placed repeatedly.

� outcomes of the ω are assumed iid with respect to chance P∗,

É minimising divergence from the equivocator maximises the worst-case expected growth
rate of W.

× Rather particular to horse-race-like gambling scenarios.

× Depends on betting one’s total wealth on each race.

(Kelly, 1956; Cover and Thomas, 1991, Chapter 6; Grünwald, 2000, §5.1)
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5.3 Properties of default loss

� By default, L(ω,Q) = 0 if Q(ω) = 1.

� By default, loss strictly increases as Q(ω) decreases from 1 towards 0.

� By default, loss L(ω,Q) depends on Q(ω) but not on Q(ω′) for ω′ 6= ω.

� By default, losses are presumed additive when domains are taken to be mutually irrele-
vant:

– If ℒ = ℒ1 ∪ ℒ2 and ℒ1 ⊥⊥ Qℒ2 then Lℒ(ω1 ∧ω2, Q) = Lℒ1(ω1, Q�ℒ1) + Lℒ2(ω2, Q�ℒ2).

É Then loss is logarithmic, L(ω,Q) = − logbQ(ω).
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6 Judgement Aggregation

Difficulties

Discursive dilemma:

θ θ→ φ φ
A true true true
B true false false
C false true false

Majority true true false

Impossibility results (e.g., Dietrich and List, 2007): the only aggregation functions are dicta-
torships if the agenda is sufficiently rich and:

Universal Domain: the domain of the aggregation function is the set of all possible profiles
of consistent and complete individual judgement sets,

Collective Rationality: the aggregation function generates consistent and complete col-
lective judgement sets,

Independence: the aggregated judgement on each proposition depends only on individual
judgements on that proposition,

Unanimity: if each individual judges a particular proposition true then so will the aggregate.
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Judgement is a decision problem

A utility matrix for judging chemotherapy:

Judgement
C ¬C

Case R 5 -10
¬R -4 1

Decide in favour of chemotherapy if EU(C) > EU(¬C), i.e., if P(R) > 1/4.
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Reasons for Judgements

Suppose agents  = 1, . . . , k give reasons φ1 , . . . , φ for their judgements concerning C:
Then one can merge the reasons and ask about R, which determines the judgement:

φX11 , . . . , φ
X1

, . . . , φXkk1 , . . . , φ

Xk
k
|≈ R?

� Here X is an assessment of the reliability of agent :

– The probability that  is correct about φj is in X.

Suppose φX11 ∪ · · · ∪ φ
Xk
k
|≈ RY .

� If Y ⊆ [.25,1] then judge C,

� If Y ⊆ [0, .25] then judge ¬C,

� otherwise collect more evidence.

Note that decision-making is playing a dual role here:

� the specific decision problem determines the relation between P(R) and the judgement
on C,

� the general scoring rule determines the logic |≈.
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Discursive dilemma again:

θ θ→ φ φ
A true true true
B true false false
C false true false

Majority true true false

Interpreting the middle two columns as the reasons:

θX1 , θ→ φX1 , θX2 ,¬(θ→ φ)X2 ,¬θX3 ,¬(θ→ φ)X3 |≈ φ?

Assume

� X1 = X2 = X3 = [0.5,1],

� the threshold for judging φ / ¬φ is 0.5,

� log loss scoring rule.

Then,
θX1 , θ→ φX1 , θX2 ,¬(θ→ φ)X2 ,¬θX3 ,¬(θ→ φ)X3 |≈ φ0.25

and an ‘aggregate agent’ (agent with aggregated reasons) should judge ¬φ.

� Goes against the majority view wrt reasons!

� Impossibility result does not apply since this method violates at least Independence and
Unanimity.
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7 Predicate Languages

� ℒ is a first-order predicate language without equality.

� Each individual is picked out by a unique constant symbol t.

� Countably many constants t1, t2, . . .

� Finitely many predicate symbols.

� ℒn is the finite predicate language involving only t1, . . . , tn.

� A1, A2, . . . , Arn are the atomic propositions of ℒn,

– i.e., propositions of the form Ut.

� An atomic n-state ωn is an atomic state ±A1 ∧ · · ·∧ ±Arn of ℒn.

� Ωn is the set of atomic n-states.
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Probability

The agent’s rational belief function is a function P : Sℒ −→ R that satisfies the properties

PP1: P(ωn)≥0 for each ωn ∈ Ωn and each n,

PP2: P(τ) = 1 for some tautology τ ∈ Sℒ,

PP3: P(θ) =
∑

ωn|=θ P(ωn) for each quantifier-free proposition θ, where n is large enogh that
ℒn contains all the atomic propositions occurring in θ, and

PP4: P(∃θ()) = spm P
�
∨m
=1 θ(t)
�

.

Calibration

C: Pℰ ∈ E = 〈P∗〉 ∩S
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Equivocation

P should otherwise be sufficiently equivocal:

� Equivocator P=(ωn) =
1
2rn for all n,ωn.

� n-distance: e.g., n-divergence dn(P,Q) =
∑

ωn∈Ωn P(ωn) log
P(ωn)
Q(ωn)

,

� P is closer to R than Q if there is some N such that for all n≥N, dn(P,R) < dn(Q,R).

� Write P ≺ Q if P is closer to the equivocator P= than Q.

� Define ↓E to be the set of members of E that are minimal with respect to ≺.

– ↓E df
= {P ∈ E : there is no Q ∈ E such that Q ≺ P}.

E: Pℰ ∈ ↓E.

e.g.,
∀U3/5 |≈ Ut4/5

1

∀(V→ H)[.6,1],∀(H→ M)[.75,1], Vs.8 |≈ Ms11/15
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