Connections between Decision-making and Probabilistic Logic

Progic2009, Groningen, 17-19 September

1 Logic and Decision-Making

What is the link between logic and decision-making?

None: Logic is about consequence / consistency, DM about pragmatics

 $\checkmark\,$ theoretical versus pragmatic rationality in traditional epistemology

Weak: A justificatory link between the two—e.g., a pragmatic justification of logic

 \checkmark e.g., Dutch book considerations in Bayesian epistemology

Strong: Can't do one without the other, & how one is done depends on the other.

• DM requires logic and logic is determined by the DM context.

2 The Role of Probabilistic Logic

- Typically, one has, at any one time, probabilities of some propositions but not others.
- Decision theory requires probabilities of *relevant* propositions.
 - E.g., A utility matrix for judging chemotherapy:

		Judgement	
		С	$\neg C$
Case	R	5	-10
	$\neg R$	-4	1

- One needs a way of determining appropriate probabilities for relevant propositions from given probabilities.
- ► One needs probabilistic logic, which can answer questions of the form:

$$\varphi_1^{\chi_1},\ldots,\varphi_n^{\chi_n} \models \psi^?$$

3 Probabilistic Logics

Expressions of the form $\varphi_1^{\chi_1}, \ldots, \varphi_n^{\chi_n} \models \psi^Y$ admit a variety of semantics: **Standard Probabilistic Semantics:** $Y = \{P(\psi) : P \text{ satisfies premisses}\}$ **Probabilistic Argumentation:** Y = probability of worlds where entailment holds **Evidential Probability:** Y = risk level associated with statistical inferences **Bayesian Statistics:** Y = probabilities yielded by Bayes' theorem

Bayesian Epistemology: Y = appropriate degree of belief in ψ

Probabilistic networks can provide a calculus for probabilistic logic—they can often be used to provide answers to the fundamental question $\varphi_1^{X_1}, \varphi_2^{X_2}, \dots, \varphi_n^{X_n} \models \psi^?$

Network Construction: Build a net to represent those *P* that satisfy the premisses

Inference: Calculate Y from the net

See:

- Rolf Haenni's progic2007 talk,
- Haenni, R., Romeijn, J.-W., Wheeler, G., and Williamson, J. (2010). *Probabilistic logic and probabilistic networks*. Synthese Library. Springer

4 Bayesian Epistemology

$$\varphi_1^{X_1},\ldots,\varphi_n^{X_n} \succcurlyeq \psi^Y$$

Y = appropriate degree of belief in ψ , given that X_1, \ldots, X_n are appropriate for $\varphi_1, \ldots, \varphi_n$.

• I.e., $P(\psi) \in Y$ where $P(\varphi_1) \in X_1, \dots, P(\varphi_n) \in X_n$ and P is a rational belief function.

4.1 Norms for Bayesian Epistemology

Probability: To avoid sure synchronic loss, *P* should be a probability function.

- ▶ We have a genuine probabilistic logic.
- **Calibration:** To avoid sure expected or long-run loss, *P* should be calibrated with physical probability *P**, where known.
 - Semantics: $\varphi_1^{\chi_1}, \ldots, \varphi_n^{\chi_n} \models \psi^{\gamma}$ iff $P(\psi) \in Y$ where $P^*(\varphi_1) \in X_1, \ldots, P^*(\varphi_n) \in X_n$
- **Equivocation:** To minimise worst-case expected loss, P should otherwise be closest to the equivocator $P_{=}$, where distance function d depends on the loss function.
 - ▶ *P* is the *robust Bayes* choice
 - if loss is logarithmic then *d* is KL-divergence and we get maxent.

Agent's language $\mathcal{L} = \{A_1, \dots, A_n\}$, evidence \mathcal{E} , atomic states $\Omega = \{\pm A_1 \land \dots \land \pm A_n\}$

Probability

P1: $P(\omega) \ge 0$ for each $\omega \in \Omega$,

P2: $P(\tau) = 1$ for some tautology $\tau \in S\mathcal{L}$, and

P3: $P(\theta) = \sum_{\omega \models \theta} P(\omega)$ for each $\theta \in S\mathcal{L}$.

Calibration

C: $P_{\mathcal{E}} \in \mathbb{E} = \langle \mathbb{P}^* \rangle \cap \mathbb{S}$

Equivocation

E: $P_{\mathcal{E}} \in \downarrow \mathbb{E} = \{P \in \mathbb{E} : d(P, P_{=}) \text{ is minimised}\}\$

where $P_{=}(\omega) = 1/2^n$ for each $\omega \in \Omega$.

• But what is the distance function *d*?

(Williamson, J. (2010). In defence of objective Bayesianism. Oxford University Press, Oxford.)

4.2 Distance between probability functions

- \mathcal{A} : space of actions.
- $L(\omega, a)$: loss on doing $a \in A$ when $\omega \in \Omega$ is the case.

Here $A = \mathbb{P}$ and the loss function $L(\omega, Q)$ is called a *scoring rule*.

- $L(P, \alpha) \stackrel{\text{\tiny df}}{=} E_P L(\Omega, \alpha) = \sum_{\omega \in \Omega} P(\omega) L(\omega, \alpha)$ is the *expected loss* for *P*.
- $H(P) \stackrel{\text{df}}{=} \inf_{a \in \mathcal{A}} L(P, a)$ is the Bayes loss or generalised entropy of P.

Assume that the scoring rule L is proper: for all P, Q = P minimises L(P, Q). (Q is a Bayes act.)

- ▶ Then H(P) = L(P, P) for $P \in \mathbb{E}$.
- $d(P,Q) \stackrel{\text{\tiny df}}{=} L(P,Q) H(P)$ is the *divergence* of P from Q.

Assume that the scoring rule L is equivocator-neutral: $L(P, P_{=}) = k$, a constant, for all P.

- e.g., brier score, logarithmic loss, zero-one loss.
- ▶ under natural conditions, $arg \inf_{Q \in \mathbb{P}} \sup_{P \in \mathbb{E}} L(P, Q) = arg \inf_{P \in \mathbb{E}} d(P, P_{=})$
 - ► the functions minimising maximum expected loss are those in E closest to the equivocator.

Grünwald, P. and Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. *Annals of Statistics*, 32(4):1367–1433.

5 Logarithmic loss

- Log loss: $L(\omega, Q) = -\log Q(\omega)$
- ► KL-divergence: $d(P,Q) = \sum_{\omega} P(\omega) \log \frac{P(\omega)}{Q(\omega)}$
- ► Maxent: $P \in \mathbb{E}$ minimises $d(P, P_{=})$ iff $P \in \mathbb{E}$ maximises $-\sum_{\omega} P(\omega) \log P(\omega)$
- ► $\varphi_1^{X_1}, \ldots, \varphi_n^{X_n} \models \psi^Y$ iff maxent *P* satisfying LHS satisfies RHS.
- ? Is log loss appropriate as a **default** loss function?

5.1 Information theory

 $\checkmark\,$ log as measure of information or code length.

× only relevant in particular cases.

* E.g., loss = cost of communicating messages (Topsøe, 1979). Irrelevant here.

- × N.b., Good (1952, §8) prefers a different logarithmic loss function.
- $\checkmark\,$ KL-divergence as a measure of distance
 - ✓ Hobson (1971): if d(P, Q) is interpreted as the information in P that is not in Q.
 - \checkmark Information geometry: divergence minimisation as projection.
 - $\times\,$ fits most naturally with exponential distributions.

5.2 Kelly Gambling

Betting set-up:

- a return of o_i pounds for each pound bet on ω_i if ω_i turns out true.
- agent bets $Q(\omega_i)W$ on each ω_i where W is her total wealth.
 - e.g., horse-racing works like this.
- bets are placed repeatedly.
- outcomes of the ω_i are assumed iid with respect to chance P^* ,
- minimising divergence from the equivocator maximises the worst-case expected growth rate of W.
 - × Rather particular to horse-race-like gambling scenarios.
 - × Depends on betting one's total wealth on each race.

(Kelly, 1956; Cover and Thomas, 1991, Chapter 6; Grünwald, 2000, §5.1)

5.3 Properties of default loss

- By default, $L(\omega, Q) = 0$ if $Q(\omega) = 1$.
- By default, loss strictly increases as $Q(\omega)$ decreases from 1 towards 0.
- By default, loss $L(\omega, Q)$ depends on $Q(\omega)$ but not on $Q(\omega')$ for $\omega' \neq \omega$.
- By default, losses are presumed additive when domains are taken to be mutually irrelevant:

- If $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$ and $\mathcal{L}_1 \perp Q \mathcal{L}_2$ then $L_{\mathcal{L}}(\omega_1 \wedge \omega_2, Q) = L_{\mathcal{L}_1}(\omega_1, Q|_{\mathcal{L}_1}) + L_{\mathcal{L}_2}(\omega_2, Q|_{\mathcal{L}_2})$.

► Then loss is logarithmic, $L(\omega, Q) = -\log_b Q(\omega)$.

Contents

1	Logic and Decision-Making	2
2	The Role of Probabilistic Logic	3
3	Probabilistic Logics	4
4	Bayesian Epistemology4.1Norms for Bayesian Epistemology4.2Distance between probability functions	
5	Logarithmic loss5.1Information theory5.2Kelly Gambling5.3Properties of default loss	10
6	Judgement Aggregation	13
7	Predicate Languages	17

6 Judgement Aggregation

Difficulties

Discursive dilemma:

	θ	$\theta \rightarrow \varphi$	φ
A	true	true	true
В	true	false	false
С	false	true	false
Majority	true	true	false

Impossibility results (e.g., Dietrich and List, 2007): the only aggregation functions are *dicta-torships* if the agenda is sufficiently rich and:

- **Universal Domain:** the domain of the aggregation function is the set of all possible profiles of consistent and complete individual judgement sets,
- **Collective Rationality:** the aggregation function generates consistent and complete collective judgement sets,
- **Independence:** the aggregated judgement on each proposition depends only on individual judgements on that proposition,

Unanimity: if each individual judges a particular proposition true then so will the aggregate.

Judgement is a decision problem

A utility matrix for judging chemotherapy:

		Judgement	
		С	$\neg C$
Case	R	5	-10
	$\neg R$	-4	1

Decide in favour of chemotherapy if $EU(C) > EU(\neg C)$, i.e., if P(R) > 1/4.

Reasons for Judgements

Suppose agents i = 1, ..., k give reasons $\varphi_{i_1}, ..., \varphi_{i_l}$ for their judgements concerning C: Then one can merge the reasons and ask about R, which determines the judgement:

$$\varphi_{i_1}^{X_1},\ldots,\varphi_{i_l}^{X_1},\ldots,\varphi_{k_1}^{X_k},\ldots,\varphi_{k_l}^{X_k} \models R^?$$

• Here X_i is an assessment of the reliability of agent *i*:

- The probability that *i* is correct about φ_{i_i} is in X_i .

Suppose $\varphi_{i_1}^{X_1} \cup \cdots \cup \varphi_{k_l}^{X_k} \models R^{Y}$.

- If $Y \subseteq [.25, 1]$ then judge C,
- If $Y \subseteq [0, .25]$ then judge $\neg C$,
- otherwise collect more evidence.

Note that decision-making is playing a dual role here:

- the specific decision problem determines the relation between *P*(*R*) and the judgement on *C*,
- the general scoring rule determines the logic \succcurlyeq .

Discursive dilemma again:

	θ	$\theta \rightarrow \varphi$	φ
A	true	true	true
В	true	false	false
С	false	true	false
Majority	true	true	false

Interpreting the middle two columns as the reasons:

$$\theta^{X_1}, \theta \to \varphi^{X_1}, \theta^{X_2}, \neg (\theta \to \varphi)^{X_2}, \neg \theta^{X_3}, \neg (\theta \to \varphi)^{X_3} \models \varphi^{?}$$

Assume

- $X_1 = X_2 = X_3 = [0.5, 1],$
- the threshold for judging φ / $\neg \varphi$ is 0.5,
- log loss scoring rule.

Then,

$$\theta^{X_1}, \theta \to \varphi^{X_1}, \theta^{X_2}, \neg (\theta \to \varphi)^{X_2}, \neg \theta^{X_3}, \neg (\theta \to \varphi)^{X_3} \succcurlyeq \varphi^{0.25}$$

and an 'aggregate agent' (agent with aggregated reasons) should judge $\neg \phi$.

- Goes against the majority view wrt reasons!
- Impossibility result does not apply since this method violates at least Independence and Unanimity.

7 Predicate Languages

- $\ensuremath{\mathcal{L}}$ is a first-order predicate language without equality.
- Each individual is picked out by a unique constant symbol t_i .
- Countably many constants t_1, t_2, \ldots
- Finitely many predicate symbols.
- \mathcal{L}_n is the finite predicate language involving only t_1, \ldots, t_n .
- $A_1, A_2, \ldots, A_{r_n}$ are the atomic propositions of \mathcal{L}_n ,
 - i.e., propositions of the form *Ut*.
- An *atomic n-state* ω_n is an atomic state $\pm A_1 \wedge \cdots \wedge \pm A_{r_n}$ of \mathcal{L}_n .
- Ω_n is the set of atomic *n*-states.

Probability

The agent's rational belief function is a function $P: S\mathcal{L} \longrightarrow \mathbb{R}$ that satisfies the properties

PP1: $P(\omega_n) \ge 0$ for each $\omega_n \in \Omega_n$ and each n,

PP2: $P(\tau) = 1$ for some tautology $\tau \in S\mathcal{L}$,

PP3: $P(\theta) = \sum_{\omega_n \models \theta} P(\omega_n)$ for each quantifier-free proposition θ , where *n* is large enogh that \mathcal{L}_n contains all the atomic propositions occurring in θ , and

PP4: $P(\exists x \theta(x)) = \sup_m P(\bigvee_{i=1}^m \theta(t_i)).$

Calibration

C: $P_{\mathcal{E}} \in \mathbb{E} = \langle \mathbb{P}^* \rangle \cap \mathbb{S}$

Equivocation

P should otherwise be sufficiently equivocal:

- Equivocator $P_{=}(\omega_n) = \frac{1}{2^{r_n}}$ for all n, ω_n .
- *n*-distance: e.g., *n*-divergence $d_n(P,Q) = \sum_{\omega_n \in \Omega_n} P(\omega_n) \log \frac{P(\omega_n)}{Q(\omega_n)}$,
- P is closer to R than Q if there is some N such that for all $n \ge N$, $d_n(P, R) < d_n(Q, R)$.
- Write $P \prec Q$ if P is closer to the equivocator $P_{=}$ than Q.
- Define $\downarrow \mathbb{E}$ to be the set of members of \mathbb{E} that are minimal with respect to \prec .

- ↓ $\mathbb{E} \stackrel{\text{\tiny df}}{=} \{ P \in \mathbb{E} : \text{there is no } Q \in \mathbb{E} \text{ such that } Q \prec P \}.$

E: $P_{\mathcal{E}} \in \downarrow \mathbb{E}$.

e.g.,

 $\forall x U x^{3/5} \succeq U t_1^{4/5}$ $\forall x (Vx \to Hx)^{[.6,1]}, \forall x (Hx \to Mx)^{[.75,1]}, V s^{.8} \succeq M s^{11/15}$

References

- Cover, T. M. and Thomas, J. A. (1991). *Elements of information theory*. John Wiley and Sons, New York.
- Dietrich, F. and List, C. (2007). Arrow's theorem in judgment aggregation. *Social Choice and Welfare*, 29(1):19–33.
- Good, I. J. (1952). Rational decisions. *Journal of the Royal Statistical Society. Series B*, 14(1):107–114.
- Grünwald, P. (2000). Maximum entropy and the glasses you are looking through. In *Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence*, pages 238–246. Morgan Kaufmann.
- Grünwald, P. and Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. *Annals of Statistics*, 32(4):1367–1433.
- Haenni, R., Romeijn, J.-W., Wheeler, G., and Williamson, J. (2010). *Probabilistic logic and probabilistic networks*. Synthese Library. Springer.
- Hobson, A. (1971). Concepts in statistical mechanics. Gordon and Breach, New York.
- Kelly, J. (1956). A new interpretation of information rate. *Bell Systems Technical Journal*, 35:917–926.
- Topsøe, F. (1979). Information theoretical optimization techniques. *Kybernetika*, 15:1–27. Williamson, J. (2010). *In defence of objective Bayesianism*. Oxford University Press, Oxford.